Theta*: Any-Angle Path Planning on Grids
نویسندگان
چکیده
منابع مشابه
Theta*: Any-Angle Path Planning on Grids
Grids with blocked and unblocked cells are often used to represent terrain in computer games and robotics. However, paths formed by grid edges can be sub-optimal and unrealistic looking, since the possible headings are artificially constrained. We present Theta*, a variant of A*, that propagates information along grid edges without constraining the paths to grid edges. Theta* is simple, fast an...
متن کاملSpeeding-Up Any-Angle Path-Planning on Grids
Simple Subgoal Graphs are constructed from grids by placing subgoals at the corners of obstacles and connecting them. They are analogous to visibility graphs for continuous terrain but have fewer edges and can be used to quickly find shortest paths on grids. The vertices of a Simple Subgoal Graph can be partitioned into different levels to create N-Level Subgoal Graphs, which can be used to fin...
متن کاملIncremental Phi*: Incremental Any-Angle Path Planning on Grids
We study path planning on grids with blocked and unblocked cells. Any-angle path-planning algorithms find short paths fast because they propagate information along grid edges without constraining the resulting paths to grid edges. Incremental pathplanning algorithms solve a series of similar pathplanning problems faster than repeated single-shot searches because they reuse information from the ...
متن کاملAny-Angle Path Planning
In robotics and video games, one often discretizes continuous terrain into a grid with blocked and unblocked grid cells and then uses path-planning algorithms to find a shortest path on the resulting grid graph. This path, however, is typically not a shortest path in the continuous terrain. In this overview article, we discuss a path-planning methodology for quickly finding paths in continuous ...
متن کاملLazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D
Grids with blocked and unblocked cells are often used to represent continuous 2D and 3D environments in robotics and video games. The shortest paths formed by the edges of 8neighbor 2D grids can be up to ≈ 8% longer than the shortest paths in the continuous environment. Theta* typically finds much shorter paths than that by propagating information along graph edges (to achieve short runtimes) w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2010
ISSN: 1076-9757
DOI: 10.1613/jair.2994